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Abstract. Starting from Tr(J$), we develop traces of JPJL, n 3 1, by means of recurrence 
relations. We also show that the Euler polynomials E 2 , ( x )  can be expressed as F,(u) 
where U = x2 - x and obtain F,( U )  by means of recurrence relations. 

1. Introduction 

Traces of products of angular momentum matrices were first calculated and tabulated 
by Ambler et a1 (1962a, b) using conventional angular momentum techniques. Rose 
(1957a, b) who first attracted the attention of theorists to the study of this problem 
employed recoupling and graphical methods (Rose 1962). Recently there has been 
considerable interest in these traces (Witschel 1971, 1975, Subramanian and 
Devanathan 1974, 1980, Pearce 1976, De Meyer and Vanden Berghe 1978a, b, Kaplan 
and Zia 1979, Rashid 1979, Ullah 1980a, b, c). Witschel used the coupled boson 
representation introduced by Schwinger (1965) and operator algebra (Witschel 1971) 
and the comparison method (Witschel 1975) to evaluate such traces. Using the results 
of Subramanian and Devanathan (1974, hereafter referred to as I), Pearce (1976) 
obtained interesting counterexamples to pair correlation monotonicity inequalities for 
the finite spin Heisenberg model, the spin-; X Y  model and the anisotropic planar 
classical Heisenberg model. Development of traces of J f J i J :  by means of recurrence 
relations (RR) was first achieved by De Meyer and Vanden Berghe (1978b). The present 
authors (Subramanian and Devanathan 1980, hereafter referred to as 11) have generated 
Tr(JtP) from Tr(J?-2) by means of RR starting from T r ( J i ) = T r ( l ) .  Rashid (1979) 
obtained a computationally advantageous expression for Tr(JkJiJ:) which exhibits a 
natural symmetry under the operation j +  - ( j + l ) .  Ullah has looked at the trace 
problem from the point of view of operator identities (Ullah 1980a) and obtained 
expressions for angular momentum traces in terms of hypergeometric functions (Ullah 
1980b, c). It has been shown that the trace of a product of angular momentum matrices 
is a polynomial in 7), the eigenvalue of the J 2  operator (I, Kaplan and Zia 1979, Rashid 
1979). 
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In this paper we show that Tr(Jip-2J&), L, M and N being any permutation of 
x, y and z ( L ,  M and N are different), can be developed by means of RR starting from 
Tr(J?-'J$), p a 2. As a by-product we obtain Tr(J?). In § 2 we obtain the RR between 
the coefficients of the trace polynomials. Results on the determination of Tr(J?-'J&) 
for p = 6 ,7 ,8 ,9 ,  10 and  Tr(Jy) are presented in § 3. 

As in the case of Bernoulli polynomials (Miller 1960, Abramowitz and Stegun 1970) 
which can be generated by means of RR (see II) ,  we show in § 4 that Euler polynomials 
E 2 , ( x )  (Abramowitz and  Stegun 1970) can also be developed by means of RR for 
n 3 1, starting from E O ( x ) .  

2. Recurrence relations for trace polynomials 

As proved in I, let 

The quantities 77 and R are defined by 

7 = A j +  1) R = 77(2j+ 1) ( 5 )  

j being the angular momentum quantum number (in units of h ) .  In I1 we have 
generated a ,  from b, by means of RR. Now consider Tr(Jipp-2J2).  Since J2= 
J:+J&+JJ' ,  = 71, I being the unit matrix and  Tr(J?-'J&) =Tr(Jy-'J;), we get 

Using equation (2.7) of 11, we get 

where the operator 9 is given by 

9 = v(47+1)D2+2(777+1)D+6 D = d/dr). (9) 
It follows from equations (7)-(9) that 

Equating corresponding coefficients in equations (6) and (10) we have 
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Using equations (3.3)-(3.5) of I1 to eliminate a, from relations (ll), we get 

2( i +  l ) [ ( i+2 ) J ;+ ,+2~2 i+3) f ; l  

= ( i +  1)( i+2)b, + [2( i +  1)(2i +3 )  -2p(2p - 1)]bt-,. (13) 

The relations (12) and (13) are true for all integral values of i provided we assume 
that fk=O, k < O  or k > p - 1 ;  g,,  b,=O, n<O or n > p - 2 .  Thus with i = p - 1  in 
equations (12) and (13) we obtain the leading coefficients of F f - , ( 9 )  and G f - A ~ ) :  

( 2 p + 1 ) f , - l = b p - 2 = ( 2 p - 3 ) g p - , .  (14) 

Knowing these leading coefficients, we can generate fk (and also b,) from equations 
(12) and (13). 

We would like to stress that the coefficients J ;  cannot be generated directly from 
gk without calculating the coefficients b,. Equations (12) and (13) are of the form 

cy, P, y, q, r, s, t being polynomials in i and p .  If s/ q = t /  r = 8, i.e. if U = qt - rs = 0, then 

PJ+l i- Y L  - a6gr-1 = 0 (17) 

so thatf; can be directly generated from g ,  without finding the coefficients b,. However, 
from equations (12), (13), (15) and (16) we have 

U =  -4(p - l ) ( i +  1)[2i-(2p -3)] (18) 

which becomes zero for ( a )  p = 1 which is not allowed since p 3 2 ;  ( b )  i = -1 which 
is unacceptable; ( c )  i = p -: # integer. Thus relation (17) does not exist in general for 
all allowed values of p and i. Hence Tr(JY-’JL) cannot be generated directly from 
Tr(Jy-4J$).  We have to recursively develop the traces via a two-step process. We 
may call the relations (12) and (13) cascade recurrence relations: gk + b, +A. 

Technically, knowing the coefficients of Gp-?(q),  one can calculate FP-, (  q )  (see 
equation (13)) and from F P - , ( ~ )  ( =  F,,+,,-,(T)) one can obtain the coefficients of 
Gp-,(q) (see equation (12)) and so on. It is then a matter of taste where to start. In 
our approach, described in this section, we generate Tr(JiP-’JL) starting from the 
lowest member of the same family of traces. However, it is pleasant to note that Tr(J?) 
and T r ( J y - 2 J L )  can be generated, in principle, from the simplest relation (see 11) 

Tr(J;) = Tr( I) = 2j + 1. (19) 

3. Results for Tr(JY-’JL) 

Starting from (see I) 

Tr(J$) = R / 3  (20) 

we can obtain T r ( J y - * J L ) ,  p b 2. We have retrieved our earlier results (table 1 of I )  
for p =2 ,  3, 4, 5. Further results for Tr(J;’-’JL) for p = 6 ,  7 ,  8, 9, 10 are presented 
in table 1. As fringe benefits, we retrieve our earlier results ( I ,  11) for Tr (Jy) ,  
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2p = 4,6, . , . , 18. Also we get 

Tr(Jio) = (R/3465)[165v9 -2475$+ 22 77071' 

- 155 l0Oq6+795 795v5-2981 8 9 5 ~ ~  

+7704 8 3 5 ~ ~ -  12 541 4607, 

+110004937-36668311. (21) 

We have applied certain checks to our results. The polynomial 
" - 1  

i = O  

satisfies 

( d )  3(22p-2)Fp-,($) = 1. (26) 

Here B,, are the Bernoulli numbers (cf Miller 1960, Abramowitz and Stegun 1970). 
Equation (23) follows from equations (14), (2) and (20): (2p+ 1)(2p- l)fp-l = 
(2p - 1)(2p - 3)g,-, = . . . = (3)( l)go = 3 0 - '  Tr(J&) = 1. It follows from equation (14) 
that bp-2 = (2p - 1)-' and this result is consistent with equation (4.7) of 11. Since 
2f,+ a, = 0 (see equation (11)) and a, = 2B2, (see equation (4.8) of II) ,  equation (24) 
follows immediately. To prove equation (25), we note that 7 = 2 when j = 1. Now by 
the Cayley-Hamilton theorem J:-JL=O since p - p  =0,  p = 1, 0, -1 being the 
eigenvalues of JL. Hence, by induction, J i P - - ' =  J: ,  p 3 2. Therefore 6FP-,(2) = 
6 K 1 T r ( J i J & ) =  1 as 7 = 2  (see table 1 of I). When j = &  7 =$  and J L = v L / 2 ,  uL 
being the Pauli spin matrices. Since ai = I, equation (26) follows easily. We have 
checked that our results satisfy equations (23)-(26). 

Using equations (3.3)-(3.5) of I1 and by means of induction, one can see that the 
adjacent coefficients of Gp-2( T ) ,  p 3 3, alternate in sign throughout. It then follows 
from equation (12) and induction that in F,-,(77) the leading coefficient and the next 
coefficient (in decreasing powers of 7) are positive and thereafter the adjacent 
coefficients alternate in sign. Thus gz and b, ( i  = 0, 1,2,  . . . , p - 3 ; p 3 3) have opposite 
signs. A glance at table 1 of I and the results of I1 and this section will testify to the 
correctness of this fact. Items 27-29 of table 1 of I can now be generated by means 

3 

Of RR. 

4. Generation of Euler polynomials by recurrence relations 

Bernoulli polynomials and Euler polynomials have strikingly similar properties 
(Abramowitz and Stegun 1970). As in the case of Bernoulli polynomials (Subramanian 
1974) one can prove by induction that 

U = X L - X .  
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The proof involves the following results (Abramowitz and Stegun 1970): 

dE,(x) /dx = nE,-,(x) n 3 l  (29) 

E z n - l ( % ) =  E 2 n ( O ) =  E,n(1)=0 n 2 1. (30) 

Since df(u) /dx = (2x-  1) df/du, we get from equations (27)-(29) 

(4u+1)  d2S,(u) /du2+2dS,(u) /du =2n(2n - l )Sn- l (u)  n z l .  (31) 

Let 
n 

E 2 , ( X )  = &(U) = 1 C,U' 
r = O  

n - l  

E2n-2(x) = SnPl (u)  = 2 D,u'. 
r = o  

It follows from equations (31)-(33) that 

(33) 

( a )  C, = Dn-l  (34) 

( b )  i ( i+1)C, , ,+2i(2i-1)Cr=2n(2n-1)D,- ,  (35) 

1 6  i 6  n - 1, n 3 2. Equations (34) and (35) are the RR for the Euler polynomials of 
even order. As equation (31) contains only the derivatives of &(U), the constant term 
CO of &(U) cannot be obtained from RR. However, it follows from equation (27) and 
relations (30) that, for n 2 1, 

S n ( u ) = E 2 , ( x ) = 0  x = o ,  1 (36) 

i.e. when U = 0. Therefore S,( U), n 2 1, has no constant term. Thus the RR are complete 
to generate E2,(x) starting from 

E,(x) = 1 = uo. (37) 

Since (see equation (29)) 

E2n-l(x)  = (2n)-' dE,,(x)/dx = (2n)-'(2x- 1) dS,(u)/du 

= (2x - 1) T,-,( U )  (38) 

one can also obtain E2n-1 (~) ,  n 2 1. Alternatively Tn-l( U )  can also be directlygenerated 
by means of RR following a procedure similar to the one given above. Our results for 

Table 2. Coefficients C, of the Euler polynomials E 2 n ( ~ )  = S , ( u ) = Z : = ,  C,u' obtained 
from E , ( x ) = l = u o w i t h  u = x 2 - x .  When rial, C,=O. 

5 6 7 8 9  n i  1 2 3 4 

1 1 
2 -1 1 
3 3 -3 1 
4 -17 17 -6 1 
5 155 -155 55 -10 1 
6 -2073 2073 -736 135 -15 1 
7 38 227 -38 227 13 573 -2492 280 -21 1 

60605 -6818 518 -28 1 8 -929 569 929 569 -330 058 
9 28820619 -28820619 10233219 -1879038 211419 -16086 882 -36 1 
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E z , ( x ) ,  n = 1 , 2 ,  . . . , 9 ,  are presented in table 2.  They are in a more concise form than 
those given by Abramowitz and Stegun (1970). It is easily seen from table 2 that when 
n 3 2 ,  C1 = -C2.  This result follows from equation (35) and the fact that Do, the 
constant term of $-,(U), n 3 2 ,  is zero (see equation (36)). By induction one can 
show that the adjacent terms of $(U), n 2 2 ,  alternate in sign throughout. We note 
that all the coefficients of S, (u )  given in table 2 are integers. We believe that this is 
true in general, but we have not proved it. The fact that the leading coefficients of 
S,(u) ,  q a 0, are all unity follows from equations (34) and (37). 
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